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Learning Objectives 
§  Where to learn more: NIH Common Fund Metabolomics 

Program 
§  What is Metabolomics and when is it useful? 
§  Study Design Considerations for Clinical Trials 
§  Metabolomics Experimental Workflow and Data 

Interpretation 
§  This presentation will cover several applications of 

metabolomics   
§  Responsivity to healthy life-style weight loss   
§  Impact of sub-therapeutic doses of antibiotics 
§  Weight status and the response to vaccination 
§  Diet and ovarian health 
§  Pregnancy complications and target identification 
§  Autism and nutritional supplementation 
§  Individual Variability  
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NIH Common Fund Program –  
   Building Metabolomics Capabilities 

Research 
Cores 

  Technology 
Development 

 Data Sharing 
and 

Collaboration 

Training   

Reference 
Standards 



NIH Common Fund Metabolomics Centers 

NIH Metabolomics Centers Ramp Up | November 4, 2013 Issue - Vol. 91 Issue 44 | Chemical & 
Engineering News. by Jyllian Kemsley 



Metabolomics Workbench 

      

http://www.metabolomicsworkbench.org/ 

Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, Edison A, Fiehn O, Higashi R, Nair KS, Sumner S, Subramaniam S. Metabolomics 

Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and 

analysis tools. Nucleic Acids Res.  2015 Oct 13. pii: gkv1042.   

Shankar  
Subramaniam 



Hands on Training 

Stephen Barnes, University of Alabama 
–  Week Long Course- June/July 
–  Experimental design, sample collection and storage,  
    data capture, processing, statistical and multivariate analysis 
–  Mass Spectrometry and NMR Metabolomics   
–  http://www.uab.edu/proteomics/metabolomics/workshop/workshop 
 
 
 
 

 
§  Martin Kohlmeier, University of North Carolina at Chapel Hill 
 

Web-based Metabolomics Learning  

Stephen Barnes 

Martin Kohlmeier 

http://metabolomicsinmedicine.org/ 



Metabolomics  

§  Metabolomics involves the analysis of the low molecular 
weight complement of cells, tissues, or biological fluids.    

§  Metabolomics makes it feasible to uniquely profile the 
biochemistry of an individual or system. 
–  Metabonomics is used to determine the pattern of changes 

(and related metabolites) arising from disease, dysfunction, 
disorder, or from the therapeutic or adverse effects of 
xenobiotics  

 
§  This leading-edge method has come to the fore to reveal 

biomarkers for the early detection and diagnosis of disease, 
to monitor therapeutic treatments, and to provide insights into 
biological mechanisms. 
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Why Metabolomics? 

§  Specific genes can be identified that define 
individuals’ at risk for a disease, dysfunction, 
or disorder, or response to treatments. 
   

§  Diseases or responses can occur at the level 
of the proteome; and proteins and 
metabolites can inform us about the state of 
a disease, dysfunction or disorder at any 
given time. 



Discrete peaks 

Metabolomics of Cells, Tissues, and Biological Fluids 

Cytosolic metabolites

Released metabolites

Cells / Organ 

Serum
Urine
Saliva
Breath
Plasma

CSF
Feces

System 

Signatures or Profiles 

Diagnostics 



Metabolite   

Comparing States of Wellness and Sickness 

Traditional Clinical 
Parameters 

Proteins More sensitive 
and early 
markers for 
disease 
detection and 
staging  

Markers to 
monitor 

• efficacy 
• adverse 
response 

• relapse 
• transplantation 
 
Mechanistic 
insights from 
pathway 
analysis 

Target 
Identification 

Pathways 



Metabotype 

Studies have shown 
metabolomics signatures (the 
metabotype) to correlate with 
gender, race, age, ethnicity, 
drugs, chemicals, stress, 
weight status, mental health 
status, blood pressure, many 
disease states, behaviors, 
nutrition, gut microbiome…. 



Study Design Considerations 

§  Study Design  
– Gender, race, ethnicity, age, exposures (drugs, chemicals, 

stress, city, etc..) all contribute to the metabotype 
 

§  Sample Collection and Storage 
– Consistency in collection and processing  
§  blood to serum (over ice?), or blood to plasma 

(anticoagulant?) 
– Storage consistency (vials, temperature, freeze thaws, etc.) 
– Selection of chemicals for extraction of samples 
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Biocrates Panels 

Sample 
Receipt  
Entry   
 

Sample 
Preparation 
QC Standards 
Pooled Samples 
 

Data Capture 
& Storage Empirical &  

Standards 
Library   

 

Experimental 
Design 
   
 

Data 
Reduction & 
Visualization 

Discovery 
& 

Pathway 
Mapping 

Communicating 
Results 
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Analysis Considerations 

§  Instrument Response and Drift 
– Consistency in parameters for each sample run 
– Create phenotypic pools as well pre- and post- run 

standards 
 

§  Data Analysis 
– Data quality, spectral alignment, formatting, etc. 
– Check the standards and the pooled samples!! 
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Quality Control Pool Samples 

Phenotype 1 Phenotype 2 

Phenotype 1 
Pooled QC 

Phenotype 2 
Pooled QC 

Combined Phenotypes 
Pooled QC 

Equal amounts 

§  Aliquots from each sample  in 
the study phenotype are pooled 
(phenotypic pool) 

§  Equal amount of each 
phenotypic pools are pooled 
(Combined phenotypic pool) 

§  Replicates of pools are 
processed and randomized 
with the study samples 

t2 

t1 

Combined 
Phenotypes 
Pool QC 

Phenotype 1 
Pool QC 

Phenotype 2 
Pool QC 



Data Analysis Methods 

Data analysis methods can include: 
–  Descriptive Statistics 
–  Hypothesis Testing 
–  Multivariate Analyses 
–  Linear Regression 
–  Logistic Regression 
–  Structural Equation Modeling 
–  Integration of Data (e.g., genomics, microbiome) 
–  Pathway Analyses 
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Multivariate Analysis 
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Principal component analysis (PCA) 
is a statistical procedure that uses an 
orthogonal transformation to convert a 
set of observations of possibly 
correlated variables into a set of values 
of linearly uncorrelated variables called 
principal components 



Research Areas 
§  Treatment 
§  Intervention 
§  Foods 

–  Fat, Soy, Casein, 
Rice 

§  Exposure 
–  Metals, PAHs, Wood 

Smoke, PM2.5 
§  Mental Health 

–  Schizophrenia, 
Bipolar Disorder, 
Anxiety 

§  Development 
§  Reproduction 
§  Cancer 
§  Climate Change 
§  Rare Disease 
§  Infection 
§  Opthamology 
§  Dentistry 

Sample Types 
§  Serum 
§  Plasma 
§  Feces 
§  Urine 
§  Saliva 
§  Sweat 
§  Kidney 
§  Liver 
§  Brain 
§  Ovary 
§  Eye 
§  Lung 
§  Muscle 
§  Mussel 
§  Rice 

 

Origin 
Humans 
§  Elderly 
§  Adults 
§  Children 
§  Neonate 
§  Pregnant 
Models 
§  Primates 
§  Rodents 
§  Aquatic 
Insects 
Cells 

         Organizations 
Harvard 
Columbia 
UPenn 
UDC 
UCSD 
Duke 
UNC-CH 
NCSU 
U Louisville 
U Montanna 
Vanderbilt 
Johns Hopkins 
Nationwide Children’s Hospital 
NC Museum of Sciences 
Howard University 
Moffiat Cancer 
 
 

ECU 
WFU 
NCA&T 
LRRI 
RTI 
NYU 
U Iowa 
NCRC 
UAB 
Fort Bragg 
 

Application Areas 

Targeted and Untargeted Analysis 

Over 150 Research Collaborations 



Nutrition Research Applications 
§  In nutrition research, metabolomics holds promise for determining 

biomarkers for the early diagnosis of disease, for understanding how 
weight and diet influence health outcomes and the responsivity to 
treatment, and for determining perturbations in biochemical pathways 
related to exposure, or disease, for informing the development of 
intervention strategies 

§  Responsivity to healthy life-style weight loss program 
§  Impact of sub-therapeutic doses of antibiotics 
§  Weight status and the response to vaccination 
§  Diet and ovarian health 
§  Pregnancy complications and target identification 
§  Autism and nutritional supplementation. 

§  While we are aware that the biochemistry of  blood groups differ, research 
on the metabotype of blood type is at its infancy.  

–  provide compelling evidence that the metabolic profiles of individuals differs by 
blood type, and that these biochemical difference may be associated with known 
increased risks for disease, and provide a means for intervention strategy. 
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in utero Exposure to Chemicals and Health Outcomes 
§  Phthalates, ubiquitous in the environment, have been characterized as 

endocrine disruptors. 
§  Pregnant rats were dosed with BBP for during gestation (gd 18-21): control, 

low dose (25 mg/kg), high dose (250 mg/kg). 
§  Urine was collected from dams gd 18 and pnd 21, and from pups after 

weaning but before puberty (pnd 26), and organ tissues were collected at 
study termination. 

 
 

20 

Dams that received the high 
dose, the low dose, or the 
vehicle at 21 days past 
exposure were distinguished 

Urine from pups, on pnd 26, were 
distinguished by the dose the 
dam received during gestation. 

Sumner et al., 2009. Metabolomics in the assessment of chemical-induced reproductive and developmental outcomes using non-
invasive biological fluids: application to the study of butylbenzyl phthalate. Journal of Applied Toxicology   and Banerjee et al., 2012. 
Metabolomics of brain and reproductive organs: characterizing the impact of gestational exposure to butylbenzyl phthalate on dams 
and resultant offspring Metabolomics 

Testes Male pup brain 

Differences (control vs BBP dose 
groups) were noted in levels of 
metabolites in the brain (male and 
female pups, not dams), testes, and 
uterus (dam but not pup).  
 
 

•  Citrate Cycle 

•  Glycine, Serine, Threonine 

•  Tryptophan 

•  Nicotinate and Nicotinamide (quinolate) 

•  Nanoparticles 

•  Arsenic 

•  Polycyclic aromatic hyrocarbons 



Neonatal Exposure to Brominated flame retardants 

§  PND 10 female C57BL/6 mice administered single dose of vehicle, 
HBCD α, γ, or commercial mixture (3, 10, or 30 mg/kg)  

§  Serum collected 4 days post-oral administering 

Szabo et al., 2016, Different serum metabolomics profiles in neonatal mice following oral brominated flame retardant exposures to 
hexabormocyclododecane (HBCD) alpha, gamma, and commercial mixture. Accepted, EHP 

PLS-DA 

Mice exposed to α-, γ-, or CM-
HBCD demonstrated differences 
in endogenous metabolites by 
treatment- and dose-groups. 
Metabolites involved in  

 amino acid metabolism 
 glycolysis 
 gluconeogenesis 
 TCA cycle 
 lipid metabolism 

Hexabromocyclododecane (HBCD) 
§ High production volume flame retardant 

§ Building insulation foams, electronics, 
and textiles 

§ Commercial mixture consists of 3 stereo 
isomers (α, β, γ) 

§ α-HBCD (10%), β-HBCD (10%), γ-
HBCD (80%) 

§ Shift from dominant γ to α detected in 
humans and wild life 

§ Implications in neurodevelopment and 
endocrine disruption 
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 Adolescent Obesity and Response to Intervention 
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§  Urine samples were obtained from adolescents 
participating in a 3 week healthy weight camp 
for overweight children. 

§  Children were provided a standardized meal 
plan, counseling, and fun physical activities. 

§  Some children had a clinically significant 
decrease in BMI, while others did not. 

§  Significant changes in the urinary metabolome 
occurred over the 3 week period. 

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

to
[1

]

t[1]

concentrations_11Nov2010.M3 (OPLS/O2PLS-DA), OPLS-DA All Classed by Response
t[Comp. 1]/to[XSide Comp. 1]
Colored according to classes in M3

R2X[1] = 0.0510651           R2X[XSide Comp. 1] = 0.35649 
Ellipse: Hotelling T2 (0.95) 

1
2

1

3

11

14

1
11

16

3

20

15

16

3
13

16

20

13

15

14

11

15

13

9

2

17

97

4

9

2

7

4

17

2

7

17

SIMCA-P+ 12.0.1 - 2010-11-15 11:42:43 (UTC-5) 

At baseline the branched-chain amino acids 
(BCAA) valine, leucine, and 2-oxoisocaproate were 
at lower levels in responders compared with non-
responders to weight loss. Other investigators have 
found high levels of plasma BCAA (valine, 
isoleucine, phenylalanine, tyrosine & leucine ) to be 
predictive of development of diabetes.   

Pathmasiri et al., 2012, Integrating metabolomic signatures and psychosocial parameters in responsivity to an immersion treatment model for 
adolescent obesity. Metabolomics, 8(6), 1037–1051.  



Metabolomics in Diet 
  
§  Diet and Ovarian Health. Non-human primates fed prudent or western 

diets. Folate synthesis, oxygen signaling, fatty acid oxidation, oxidative 
damage, reactive oxygen species. – with Sue Appt, DVM, WFU. 

 
§  Influenza and Obesity. Flu in a diet-induced obesity model, and in mice 

lacking leptin receptor signaling: High-fat diet-induced and genetic-induced 
obese mice exhibited greater  pH1N1 mortality, lung inflammatory 
responses, and excess lung damage despite similar levels of viral burden 
compared with lean control mice. Metabolites were perturbed by obesity both 
prior to and during infection- fatty acid, phospholipid, and nucleotide 
metabolism.  –M Beck, PhD, UNC-CH.  

–  Milner et al., 2015, Obesity increases mortality and modulates the lung metabolome during pandemic H1N1 
influenza virus infection in mice. Journal of Immunology, 194(10), 4846–4859.   
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Metabolomics and Autism 

Chinese Han population  
3 - 6 years old 
Discovery phase 

•  Autistic subjects n=73 (59 M/14 F) 
•  Neurotypical subjects n=63 (51 M/

12 F) 
Validation phase 

•  Autistic subjects n=100 (86 M/14 F) 
•  Neurotypical subjects n=100 (81 M/

19 F) 
Exclusion: 

•  Asperser’s syndrome, Rett 
syndrome, pervasive developmental 
disorder not otherwise specified, 
Fragile-X syndrome 

Fasting plasma analyzed with UPLC-MS  
	
  

Diagnosis Panels Used 
•  Autism Behavior Checklist, Childhood 

Autism Rating Scales,  
Developmental quotient development 
delay diagnosis 

Normal control subjects 
•  Recruited from two kindergartens in 

the same city-Harbin. Clinically 
examined to assure no features of 
developmental delay or autistic traits.  

Wang et al (2016). Potential serum biomarkers from metabolomics study of 
autism potential serum biomarkers from metabolomics study of autism. 
Journal of Psychiatry and Neuroscience, 41(1), 27–37. 

Discovery: 17 metabolites identified 
Validation: 11 metabolites validated  

sphingosine 1-phosphate 
docosahexaenoic acid  
 Decanoylcarnitine, pregnanetriol 

uric acid, epoxyoctadecenoic acid, 
docosapentaenoic acid, adrenic acid, 
LPA(18:2(9Z,12Z)/0:0), 

LysoPE(0:0/16:0), LysoPE(18:0/0:0) 



 
Early Serum Markers of 3rd Trimester Placental Abruption 
 
§  Placental abruption (PA) is an ischemic 

placental disorder that results from 
premature separation of the placenta 
before delivery and occurs in 1% of all 
pregnancies. It is associated with 
preterm delivery, fetal death, maternal 
hemorrhagic shock, and renal failure. 

§  Difficult to diagnose 
–  Not a universally accepted definition 

§  PA in the study samples was based 
on medical record review 

–  Most common symptoms are vaginal 
bleeding and complaints of abdominal 
pain and uterine contractions. 

§  Goal of this study was to determine 
biomarkers from the 2nd trimester serum 
that predicts PA in the 3rd trimester 

Collaboration with Michelle 
Williams (Harvard University) 

§  Samples from the Abruption Study 
(Swedish Medical Center, WA) 

–  Serum collected at the time of 
recruitment (approximately 16 weeks 
gestation) 

–  Cases were identified that had at least 
two of the three clinical criteria: 
§  Vaginal bleeding at ≥20 weeks in 

gestation accompanied and either non-
reassuring fetal status or uterine 
tenderness/hypertonic uterus (without 
another identified cause) 

§  At delivery, the placenta showed 
evidence of tightly adherent clot and/or 
retroplacental bleeding 

§  Sonographically diagnosed abruption 
 



Nine Metabolites were Significantly Associated with PA 
(p<0.05) 

Classification	
  
Metabolite 
Abbreviation	
   Metabolite	
   p-value	
  

Acylcarnitines	
   C16-OH	
   Hydroxyhexadecanoyl-­‐L-­‐carni1ne	
   0.021	
  

Amino Acids	
   Arg	
   Arginine	
   0.029	
  

Biogenic Amines	
   Histamine	
   Histamine	
   0.034	
  

Custom Ratios	
   C12 / C12:1	
   Dodecanoyl-­‐L-­‐carni1ne/Dodecenoyl-­‐L-­‐carni1ne	
   0.045	
  
 
Glycerophospholipids	
  
 	
  
  	
  
 	
  
 	
  

PC aa C36:0	
   Phospha1dylcholine	
  diacyl	
  C	
  36:0	
   0.040	
  

PC aa C38:0	
   Phospha1dylcholine	
  diacyl	
  C	
  38:0	
   0.048	
  

PC aa C40:1	
   Phospha1dylcholine	
  diacyl	
  C	
  40:1	
   0.038	
  

PC ae C38:1	
   Phospha1dylcholine	
  acyl-­‐alkyl	
  C	
  38:1	
   0.021	
  

lysoPC a C18:1	
   lysoPhospha1dylcholine	
  acyl	
  C18:1	
   0.040	
  

 
 
p180 Biocrates kit for the simultaneous quantification of 188 compounds 

•  free carnitine 
•  40 acylcarnitines (Cx:y) 
•  21 amino acids (19 proteinogenic amino acids, citrulline and 

ornithine) 
•  21 biogenic amines 
•  hexose (sum of hexoses – about 90–95% glucose) 
•  90 glycerophospholipids (14 lysophosphatidylcholines (lysoPC) 
•  76 phosphatidylcholines (PC diacyl (aa) and acyl-alkyl (ae) 
•  15 sphingolipids (SMx:y) 

 



Logistic regression was used to model the probability of PA 
in the 3rd trimester based on serum biomarkers in  2nd 
trimester 

Area Under the 
ROC Curve 
 (95% CI)	
  

Model AUC 
Compared to VB 

Model AUC	
   Error Rate	
   Brier Score	
   R2	
  

Bayes 
Information 

Criteria (BIC)	
  
Model	
  
Vaginal Bleeding Only	
   0.63 (0.55, 0.71)	
   ---	
   0.37	
   0.23	
   0.10	
   135.0	
  
Metabolites Only	
   0.68 (0.58, 0.79)	
   p=0.48	
   0.37	
   0.22	
   0.10	
   139.3	
  
Vaginal Bleeding + Metabolites	
   0.76 (0.66, 0.85)	
   p=0.003	
   0.29	
   0.20	
   0.19	
   133.1	
  

Random chance 

VB 

VB + Metabolites 

Metabolites 

VB + high C12 / C12:1 

No VB + high C12 / C12:1 

P
ro

ba
bi

lit
y 

of
 P

A 

No VB + low C12 / C12:1 

 VB + low C12 / C12:1 

Mean Centered Concentration of PCaeC38:1 
(Mean=6.2) ROC Curve (Area) 

VB=0.63   Metabolites=0.68   VB + Metabolites=0.76 

False Positive Rate 

Tr
ue

 P
os

iti
ve

 R
at

e 



Pathways and PA 
The probability of PA was increased with an increase in acylcarnitines and a 
decrease in phosphatidylcholine. 
§  These related pathways (acylcarnitine or phosphaticholine) branch at the metabolite 

diacylglycerol 
–  Diacylglycerol is transformed to the endocannabinoid 2-arachidononylglycerol (2-AG), and 2-

AG is converted to prostogladin glycerol esters.  
§  Vaswani et al. recently demonstrated that the enzyme prostaglandin-endoperoxide 

synthase-2 (PTGS-2), which converts 2-AG to prostaglandin glycerol esters, is down-
regulated in the aging placenta 

–  consistent with studies investigating the importance of PTGS-2 in preterm labor, and suggest 
that PTSGS-2 may play a role in the pathogenesis of abruption  

§  Aspirin, a COX-2 inhibitor, is used in extremely high risk pregnancies 
§  Choline/phosphatiylcholine are important in pregnancy and fetal development. 
§  Acylcarnitines are markers for mitochondrial function and reflect metabolic processes 

involved in long-chain fatty acid metabolism   
–  they are synthesized by the enzyme carnitine palmitoyltransferase 1 (CPT 1) that is known to 

be responsible for the transport of fatty acids into the mitochondrial matrix  
•  Incomplete fatty acid oxidation results in elevated acylcarnitine concentrations, which 

is used in newborn screening to detect metabolic disorders.  
•  Alterations in concentrations of  acylcarnitines have measured in women with 

gestational diabetes mellitus, or hypertensive disorders of pregnancy  



INH Drug Induced Liver Injury: Systems Biology 
Sumner, et al.(2010). Metabolomics of urine for the assessment of microvesicular lipid accumulation in the 
liver following isoniazid exposure. Metabolomics, 6(2), 238–249. 

Genetically Diverse 
Mouse Population 

§  Histopathology, Adipophilin  
§  miRNA (miR-122) Expression 
§  Transcriptomics 
§  Metabolomics  
§  Genomics (GWAS) 
§  Cholesterol/Triglycerides 

Isoniazid (INH)  
(3 days) 

Endpoints 

§  High degree of inter-strain variation in 
hepatic microvesicular steatosis 

§  Genetic contribution to phenotype 
§  Genetically sensitive mouse strains 

§  Developed severe steatosis   
§  Genetically resistant mouse strains 

NON/ShiLtJ (Resistant) 

LG/J (Sensitive) 

Vehicle                 INH 

Top 10 pathways associated with INH 
treatment  

Vehicle                 INH 

§  Glutathione and metabolites involved in 
choline metabolism were among those 
metabolites decreased in livers of sensitive 
mouse strains 

§  Genes involved in mitochondrial dysfunction 
pathway were enriched in liver transcripts 

§  Genes involved in lipid metabolism and 
transport (Apoa4, Chpt1, Lamp1) were 
associated with steatosis 

Church et al, 2014. A Systems Biology Approach Utilizing a Mouse Diversity Panel Identifies Genetic Differences 
Influencing Isoniazid-Induced Microvesicular Steatosis. Tox. Sci. 140(2): 481-92.  



Antibiotic Mediated Gut Microbiome Perturbation Accelerates Type 1 Diabetes 

•  C: Control 
•  S: STAT 

treated 
•  P: PAT treated 

These results provide evidence that early-life PAT exposure increase the 
development of T1D and accelerates the severity of insulitis 

•  Hypothesis: Early-life antibiotic use alters 
gut microbiota essential for immune 
development - promoting T1D development. 

•  Non-obese diabetic (NOD) mice were 
exposed to PAT or control 
•  pulsed antibiotic treatment-macrolide 

tylosin 
•  By 31 weeks of age, control females had 

higher T1D incidence (50%) than males 
(26%). 

•  T1D incidence in males was significantly 
increased in PAT exposed- compared to 
controls.  

Alexandra Livanos 

Martin Blaser 
NYUMC 



Antibiotic Mediated Gut Microbiome Perturbation in T1D 

Control PAT 

METABOLOMICS 

MICROBIOME 

Contr
ol PAT 

Contr
ol 

PAT 

Contr
ol 

PAT 

Cecal 

Liver 

Serum 

Metabolomics distinguished PAT 
exposed NOD from NOD control: 
including differences in amino acids, 
lipids and significant reduction in 
butyrate 

Microbiome analysis showed 32 
genus-level taxa significantly 
enriched in controls and 7 
enriched in PAT mice 
 
Metagenome in PAT mice were 
enriched in lipid, AA metabolism 
and reduced for butyrate 



Mechanisms of Childhood Glucocorticoid Resistance 

32 

The SSNS model has good quality fit statistics: 
 R2X(cum)=0.911 Q2(cum)=0.595.   

The SSNR model did not have good quality fit statistics.	
  

•  Blood was collected by the Midwest Pediatric 
Nephrology Consortium from 26 children with 
steroid sensitive (SS) and 14 children with  steroid 
resistant (SR) nephrotic syndrome (NS) 

•  Collected prior to beginning treatment, and after 
~7 weeks of daily oral glucocorticoids.  

•  Plasma was analyzed using broad spectrum 
metabolomics and quantitation. 

•  PCA of the pre- and post-treatment SSNS groups 
demonstrated that the biological variance between 
the treatment and non-treatment groups was 
greater than the individual variability.   

•  Compounds important for the differentiation of 
SSNS pre-and post-treatment included 
lipoproteins, and glucose. 

•  SSNS pre- and post-treatment plasma had p ≤ 
0.05 for 3-hydroxybutyrate, acetate, adipate, 
creatine, glucose, glycine, methylamine, pyruvate, 
tyrosine and valine. 

•  Alanine and o-phosphocholine levels had p ≤ 0.05 
for the pre and post treatment samples for SSNS 
and SRNS phenotypes. 

SSNS before treatment 

after treatment 

 Collaboration with 
William Smoyer 
Nationwide Children’s Hospital 
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Human Metabolic Individuality 
§  Analysis of genotype dependent 

metabolic phenotypes using GWAS with 
non-targeted metabolomics via UPLC-
MS and GC-MS 

 
§  Metabolic profiling on fasting serum 

from the Cooperative Health Research 
in the Region of Augsburg (KORA) F4 
study (n=1,768) and British TwinsUK 
study (n=1,052) 

§  Assessed the association of 
approximately 600,000 genotyped 
SNPs with more than 37,000 metabolite 
signals by fitting linear models  in each 
cohort  to the log-transform of  
metabolite signals (adjusted for age 
gender and family structure) 

 
 

33 *Suhre et al. Human metabolic individuality in biomedical and pharmaceutical research, Nature 2011, 477, 54-62 

Genetic basis of human metabolic individuality 
37 Loci Correlated with Specific Disease 



Human Metabolic Individuality 
Example Disease Related Associations 
 
§  Kidney disorders 

–  Established a link between N-acetyltransferase 8 locus, N-
acetylornithine, and eGFR, and CKD. 

§  Type 2 diabetes 
–  Glucokinase regulator (GCKR) is a associated with diabetes 

and cardiometabolic related traits. This locus has a highly 
significant association with mannose:glucose ratios.  

§  Gout 
–  SLC2A9 (GLUT9) which transports uric acid is highly 

associated with Urate metabolite levels 

34 *Suhre et al..: Human metabolic individuality in biomedical and pharmaceutical research, Nature 2011, 477, 54-62 



What’s blood type got to do with metabolomics? 

Serum  from 10 subject with AB, O, A, 
and B blood types was analyzed by 
NMR broad spectrum metabolomics. 
 

Pool, Blood Type A 

Pool, Blood Type O 

Pool, Blood Type AB 

Pool, Blood Type B 

•  Serum  from 40 white healthy males 
AB, O, A, and B blood types 

 
•  Each of the 40 samples were prepared 

and run individually, and triplicates of 
each blood group were pooled and 
analyzed. 

•  Broad spectrum metabolomics  
 

PCA of Pooled Samples 

Q2 > 0.9 
 

ABO blood type is located on 
chromosome 9 (9q34.1) - ABO 
glycosyltransferase.  
 
The three main allelic forms are 
A, B, and O - each  responsible 
for the production of its 
glycoprotein.  
 



Metabotype of each Blood Type 
Blood Type X 
vs All Others 

Metabolites Important to Defining Blood Type X 

O 2-Hydroxy-3-methylvalerate, 2-Hydroxybutyrate,2-Hydroxyvalerate, 2-Oxocaproate, 2-Oxovalerate, 3-
Hydroxybutyrate, 5-hydroxylysine, Agmatine, Alanine, Betaine, Butyrate, Carnitine, Choline, 
Dimethylamine, Fatty Acids, Fructose, Galactarate, Glucose, Glutamate, Glutamine, Glutathione, 
Glycerol, Isoleucine, Lactate, Leucine, Lipoproteins, Lysine, N-acetyl aminoacids, O-Acetylcarnitine, O-
Acetyocholine, O-Phosphocholine, Phenylacetate, Proline, Pyroglutamate, sn-Glycerophosphocholine, 
Succinate, Taurine, TMAO, Galactonate, Unsaturated lipids, Valine  

 
A 2-Hydroxy-3-methylvalerate, 2-Hydroxyvalerate, 2-oxocaproate, 3-Hydroxybutyrate, 3-Methyl-2-

oxovalerate, Agmatine, Betaine, Butyrate, Carnitine, Choline, Creatine, Creatinine, Fatty Acids, Fructose, 
Glucose, Glutamate, Glutamine, Isoleucine, Lactate, Leucine, Lipoproteins, Lysine, N-acetyl 
aminoacids,O-Acetyocholine, O-Phosphocholine, Phenylacetate, Phenylalanine, Proline, sn-
Glycerophosphocholine, TMAO, Tryptophan, Unsaturated lipids, Valine 

 
B 2-Hydroxy-3-methylvalerate, 2-hydroxybutyrate, 2-hydroxyisocaproate, 2-Oxocaproate,3-

Hydroxybutyrate, 3-Methyl-2-oxovalerate, 3-Phenyllactate, 4-Aminobutyrate, Acetate, Acetoacetate, 
Asparagine, Betaine, Butyrate, Carnitine, Choline, Creatine, Glucose, Glutamate, Glutamine, Glutarate, 
Glutathione, Glycerol, Lactate, Leucine, Lipids, Lipoproteins, Lysine, N,N-dimethylglycine, N-Acetyl 
aminoacids, N-Acetylglutamine, N-Methylhydantoin, O-Phosphocholine, Phenylacetate, Phenylalanine, 
Proline, Pyroglutamate, sn-Glycerophosphocholine, Taurine, Trimethylamine N-oxide, Tryptophan, Valine  

 
AB N-Acetyltyrosine, O-Acetylcarnitine, O-Acetyocholine, p-Cresol, Phenylacetate, TMAO, 2-

Hydroxybutyrate, 2-Hydroxyisocaproate, 2-Oxocaproate, 4-Aminobutyrate, 5-Hydroxylysine, Acetate, 
Alanine, Carnitine, Citrate, Fructose, Galactarate, Glutamate, Glutathione, Glycerol, Lipids, 
Phenylalanine, Pyroglutamate, Sarcosine, sn-Glycerophosphocholine, Succinate, Taurine, Galactonate, 
Unsaturated lipids, 2-Hydroxy-3-methylvalerate, 2-Hydroxyvalerate, 3-Hydroxybutyrate, Betaine, Choline, 
Dimethylamine, Glucose, Isoleucine, Lactate, Leucine, Lipoproteins, Lysine, N-acetyl aminoacids, O-
Phosphocholine, Proline, Valine 
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Blood Type and Disease 

§  The Suhre et al. “Human metabolic individuality in biomedical and 
pharmaceutical research” GWAS study demonstrated links between 
SNPs, specific metabolites, and disease. 

§  There are known risks of specific blood types and diseases. 
§  Can we determine links between the metabotype of the blood type and 

disease?  
§  Can we determine links between secretor status, the metabotype of the 

blood type, and disease? 
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Diabetes	
  Type	
  2	
  
Obesity	
  

Glucose, Lipoproteins, Plasma 
phospholipids, Glycerol, Leucine, 

Isoleucine, Valine, Amino acids and metabolites, 
Fatty acids- unsaturated and saturated, Uric acid, TCA-cycle 

metabolites, Tyrosine, Phenylalanine, 
Esterified fatty acids (EFAs) and non-esterified fatty acids 

(NEFAs), Acylcarnitines, β-hydroxybutyrate, Sulfur 
amino acids, Bile acids 
 
 

Non-­‐O	
  blood	
  Groups	
  
(B	
  as	
  an	
  example)	
  

2-Hydroxy-3-methylvalerate, 2-hydroxybutyrate,2-
hydroxyisocaproate, 2-Oxocaproate,3-Hydroxybutyrate, 3-
Methyl-2-oxovalerate, 3-Phenyllactate, 4-Aminobutyrate, 

Acetate, Acetoacetate, Asparagine, Betaine, 

Butyrate, Carnitine, Choline, Creatine, Glucose, 

Glutamate, Glutamine, Glutarate, 

Glutathione, Glycerol, Lactate, Leucine, 

Lipids, Lipoproteins, Lysine, N,N-
dimethylglycine, N-Acetyl aminoacids, N-Acetylglutamine, N-

Methylhydantoin, O-Phosphocholine, sugars, 
Phenylacetate, Phenylalanine, Proline, 

Pyroglutamate, sn-Glycerophosphocholine, Taurine, 

Trimethylamine N-oxide, Tryptophan, Valine	
  

Disease	
  
Disease	
  Metabolites	
  Important	
  to	
  

Projec4on	
  
Blood	
  Type	
  and	
  Risk	
  

for	
  Disease	
  
Blood	
  Type	
  Metabolites	
  Important	
  to	
  

Projec4on	
  



AB vs O Metabotypes: UPLC-TOF-MS    

Serum  from 10 subject with AB, O, A, 
and B blood types was analyzed by 
NMR broad spectrum metabolomics. 
 

•  Serum  from 40 white healthy males 
AB, A, B, and O   

 
•  UPLC-TOF-MS  
 

PCA of All Samples 

AB O 



Links Between Metabolites, Disease, and Blood Type 
§  3-Decaprenyl-4-hydroxybenzoic acid (DHB) is 2.7 fold higher in AB vs O 

blood groups (p < 0.001). 
–  DHB in humans is involved in the biosynthesis of coenzyme Q10.  
–  Reduced CoQ10 levels is a typical feature of PD patients, and associated with 

mitochondrial energy production deficit.  
–  Franchini and Liumbruno: Blood Transfus. 2016 Mar; 14(2): 158–159.  

§  The AB blood type and increased coagulation factor VIII levels were associated with a 
higher incidence of cognitive decline. 

§  Opiorphin is 3.6 fold higher in AB than O (p= 0.01).  
–  Opiorphin is an endogenous compound first isolated from human saliva, and is a 

natural antinociceptive modulator of opioid-dependent pathways.  
–  The odds ratio for AB blood group in opioid addicts is 3.98 compared to non-

addicts (p < .001) 
–  Afltoonian et al., 2011. Possible association between human blood types and 

opioid addiction  Am J Addict. Nov-Dec;20(6):581-4  
–  Non-O blood groups are associated with the ADRA2C 322-325 deletion variant 

which has been associated with higher pain perception and cognitive responses. 
§  Kohil et al., 2010. Eur J Pain.  Effects of variation in the human alpha2A- and alpha2C-

adrenoceptor genes on cognitive tasks and pain perception Feb;14(2):154-9.  
39 



Links Between Metabolites, Disease, and Blood Type 

§  Uric Acid is 1.6-fold lower in AB vs O (p <0.001). 
–  High blood concentrations of uric acid can lead to gout and are associated with 

other medical conditions including diabetes and the formation of ammonium acid 
urate kidney stones. 
§  Anecdotal - O is more likely to have gout 
§  Acheson, 1970. Epidemiology of serum uric acid and gout: an example of the 

complexities of multifactorial causation. Proc R Soc Med. 1970 Feb; 63(2): 193–
197 

§  Guo et al.,  Intestinal Microbiota Distinguish Gout Patients from Healthy 
Humans. Sci Rep 2016 Feb 8;6:20602. doi: 10.1038/srep20602. 

§  Mkivuokko et al., 2012. J. Association between the ABO blood group and the 
human intestinal microbiota composition. BMC Microbiology 
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Lipid Profiling of AB vs O Blood Groups 
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•  Esomeprazole and 5-hydroxyesomeprazole 
•  Used to treat Peptic Ulcers and Gastro-esophageal reflus 

(GERD) 
•  Type O is more likely to develop GERD and peptic ulcers 

•  Garratty (2000) Blood groups and disease: A historical 
perspective. Transfusion Medicine Reviews,14:291-301  

 



AB vs O Metabotypes: GC-TOF-MS    

Serum  from 10 subject with AB, O, A, 
and B blood types was analyzed by 
NMR broad spectrum metabolomics. 
 

•  Serum  from 40 white healthy females 
AB and O   

 
•  GC-TOF-MS: Fiehn Method 
 

OPLSDA 

AB O 



GC-TOF-MS: AB vs O 
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Metabolite p-value  
alanine 0.033 

arachidic acid 0.009  
behenic acid 0.021 

glucose <.001 
glutamine   0.01 
glycerol 0.034 
glycine 0.05 

histidine  0.019 

isoleucine 0.012 
leucine 0.007 
lysine 0.039 

myristic acid 0.053 
octadecanol 0.033 
palmitoleic 

acid 0.041 
phenylalanine 0.038 

proline 0.031 
serine 0.028 

stearic acid 0.051 
tyrosine 0.027 
Valine 0.009 

•  Branched Chain Amino Acids are higher in AB  
•  BCAAs been associated with increased risk for diabetes 

•  Diabetes is higher in non-O blood groups 
•  Tyrosine is involved in the production of the stress 

neurotransmitters epinephrine and norepinephrine. It is taken 
as a supplement to fight off depression and boost dopamine 
levels 

•  Tyrosine is higher in the AB blood type 
•  Type O blood type have more depression and intense 

anxiety 
•  Anderson and Stern, 2015, Blood Type matters for 

Brain Health. Scientific American 
•  Singg and Lewis, 2001, Depression and Blood Types. 

Psycol Rep. 
•  Palmitoleic acid is an unsaturated fatty acid and reported to 

play a role in reduced heart disease risk. 
•  Lower in AB than O 
•  Blood type A, B, or AB had a higher risk for coronary heart 

disease   when compared to those with blood type O 
•  He et al., 2012. ABO Blood Group and Risk of Coronary 

Heart Disease in Two Prospective Cohort Studies. 
Arteriosclerosis, Thrombosis, and Vascular Biology, 32(9), 
2314–2320. 
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